
LS-UTILITY

Copyright 1984 MISOSVS, Inc.

The LS-UTILITY Disk

Table of Contents

General Information .•••.•...•..• 1

CALC/FL T • 3

KSMPLUS/FLT .•...•••••••••••••••• 5

MAXLATE/FL T • • • • • • . • • • . • • • • • • • • • • 9

PRCODES/FLT •.........•......••.• 12

RDTEST/CMD•..•••••....•••••• 15

READ40/CMD ..••...••........••.•• 16

TRAP /FLT • • . • • • • . • . • . . . • • . . 18

TYPEIN/CMD •...••••.••••••.••.••• 19

LS-UTILITY, Copyright 1984 MISOSYS, Inc., All rights reserved

MISOSYS, Inc.
PO Box 239

Sterling, VA 22170-0239
703-450-4181

ADDENDUM TO THE LS-UTILITY DISK

The following points need to be clarified with respect to using MAXLATE/FLT:

On Page 10 (third paragraph, starting with "In this example ... ") it is
stated that "Any character may be used as a separator, with the exception of
a quote mark or a digit (0-9)". This is incorrect, and should read as:

"Either commas or spaces may be used as separators''.

Use of any other character as a separator may cause unpredictable results.

On Page 11 (in the section titled "Practical Use of MAXLATE 11), all of the
information is correct as printed. A notation should be made however, when
using MAXLATE in conjunction with the communications line and the TRSDOS
Utility program COMM/CMD. When the communications line is filtered with
MAXLATE, and COMM/CMD is used to receive data through MAXLATE (i.e. MAXLATE
is established with the INPUT parameter), the translation ••stream" should NOT
be longer than one character.

In the example of the COMIN/MLT file, the translation stream in the first
line of the file (i.e. the two 0D's to the right of the equal sign) will NOT
produce the desired results when used with COMM/CMD. The second translation
line (i.e. translating a 0A to 11 no character") will work properly.

This restriction applies only to the INPUT direction when COMM/CMD is used.
COMM/CMD will allow multiple-character translation streams for OUTPUT only.

G E N E R A L I N F O R M A T I O N

This section will cover General Information regarding the use of this package. If you
are not familiar with using filters in the TRSDOS 6 environment, READ THIS FIRST.

Keyboard Nomenclature

Throughout the documentation, you will see references to individual letters (A-Z),
digits (0-9) and words that are enclosed in "less than - greater than" symbols <>.
This type of representation means that the single key with the "enclosed" caption
should be pressed. For instance, when <ENTER> is shown in the documentation , you
should press the key marked with the legend "ENTER".

Some of the filters require the use of a multiple key sequence to perform a function.
KSMPLUS is one such example. To use a KSMPLUS key definition, a two key sequence is
necessary, and is of the form <CLEAR >< key>. Whenever this type of entry is required,
you must depress the <CLEAR > key first, and while holding it down, depress the desired
key. If <CLEAR > is not pressed first, or if it is not being held down during the
depression of the second key, the "correct" keystroke will NOT be generated.

Another example of a multiple key sequence is when you wish to edit a KSMPLUS key
definition. This operation involves a three key sequence of the form
<CLEAR >< SHIFT >< key>. When this type of keyboard input is required, it must be entered
in this manner.

1) Press the <CLEAR > key first.
2) While holding down the <CLEAR > key, press the <SHIFT> key.
3) Wh i le holding both the <CLEAR > and <SHIFT> keys down, press the desired key.

Instal l ation and Use of Filters

When installing a filter , a two step process must be followed. In the first step, the
"filter device" must be establ i shed. This is done through the SET command . A "phantom
device" is SET to the desired filter. The device specification (referred to as dev i ce
spec) consists of an asterisk <*> followed by a two character device name. The device
name is chosen by you. It is compr i sed of any two alphabetic characters (A-Z),
provided that this device name is not already in use . Examples of device names which
are used by TRSDOS (i.e. "already in use") are *KI (the keyboard device), *DO (the
video device), *PR (the printer device) and *JL (the job log device).

For example, to use the TRAP/FLT filter, you must first SET a device to the filter. If
we wish to name the device *TR, the following command can be used:

SET *TR TRAP/FLT (OUTPUT,CHAR=X'0A')

You will notice that there is more on this "command line" than the SET command, the
device spec (*TR) and the name of the fi l ter (TRAP/FLT). Following the filter name is
an open parenthesis <(> and a list of parameters. These parameters are "passed" to the
filter in the command line, and tell the filter what to do. In some cases, parameters
are optional, and need not be specified. In other cases, "defaults" will be assigned
to the parameters, so that if the parameter is not specified, the default will be
used . Information regarding parameter usage can be found in the "syntax block" for
each filter/utility in this package . The syntax block is found on the first page of
each filter/util i ty section , and details all necessary information for proper use.

LS-Utility Disk
Page - 1

In this specific case (i.e. with TRAP/FLT), two parameters were passed. These
parameters are NOT optional and no default values are assumed, so they must be
specified. In most cases, parameters can be abbreviated to their first character.
Information on allowable abbreviations can be found on the last line in the syntax
block (abbr:). The following SET command is the same as the first, except that the
parameters are abbreviated.

SET *TR TRAP (O,C=X'0A')

Notice that
"/FLT" for
device to
extension
extension

the filter name in this example does not have an "extension" (i.e. the
TRAP was not entered). You need not specify the extension when SETting a

a filter if the extension of the filter is /FLT (SET assumes a default
of /FLT if no extension is used). However, if you are REMOVING a filter. the
(/FLT) must be used.

After the SET has been completed, the next step is to apply the filter to a device.
This is accomplished through the FILTER command. In the above example, we have
established *TR as a filter device. If we wish to "filter" the printer using TRAP/FLT,
we can use the command:

FILTER *PR *TR

After this has been done, our printer will be "filtered", and will "trap" all line
feed characters (X'0A').

Several additional points need to be made with respect to entering commands and
parameters. The examples contained within the syntax blocks are prec1se in describing
command entry. Spaces are necessary where shown. If more than one parameter is
specified, a comma<.> must be used as a separator. After entering a SET command, if
an error message appears (most commonly Parameter Error), check the entry of the
command against that shown in the syntax block. If "multiple" spaces are used (where
there should have been only a single space), or a space is used in the place of a
comma, an error will occur, and you will need to re-enter the command.

Some filters (such as MAXLATE and KSMPLUS) require the use of a ''filespec" when being
SET. Filespec is the name of a disk file which contains data that will be used by the
filter. Again, the syntax block precisely describes the method by which the filter is
SET. In general, the filespec will follow the name of the filter program, and must be
separated from the filter name by a space. If parameters are used, they must follow
the filespec.

Suppose that you wish to use KSMPLUS2/FLT with a KSM data file named MYKSM/KSM. The
following SET command will establish the KSMPLUS filter device (*KM).

SET *KM KSMPLUS2/FLT MYKSM/KSM (ENTER=X'25')

Of interest in the above command is the ENTER= parameter. With KSMPLUS, the ENTER
parameter is used to specify the character which represents an ''embedded enter". In
this case, a hexadecimal value was passed (X'25'). This value could also have been
passed as a decimal value, or as the character enclosed in quote marks. The next two
commands will produce results identical to the command above.

SET *KM KSMPLUS2/FLT MYKSM/KSM (ENTER=37)
SET *KM KSMPLUS2/FLT MYKSM/KSM (ENTER="%")

The valid parameter entries will be listed in the syntax block for each filter/utility
in this package.

LS-Utility Disk
Page - 2

C A L C / F L T

CALC/FLT is a keyboard filter which allows Hex/Decimal/Binary conversions to be
performed, as well as Hex addition and subtraction. The syntax is:

==-
To Install CALC/FLT

SET *ds CALC/FLT
FILTER *Kl *ds

To Remove CALC/FLT

RESET *KI
RESET *ds
CALC/FLT (REMOVE)

*ds is any valid TRSOOS device spec

abbr: REMOVE=R

===

I M P O R T A N T N O T I C E

CALC/FLT is designed as a keyboard filter only!! Use of this filter on any other
device will cause unpredictable if not disasterous results.

CALC/FLT will convert Hex/Decimal/Binary flumbers and display the representation of the
converted number in the "base" specified (e.g. CALC/FLT wi 11 al low you to input a
Hexadecimal number and will display the corresponding Decimal value) . In addition, Hex
addition and subtraction may be done.

After installat ion, CALC/FLT may be invoked by the depression of the
<CLEAR >< SHIFT>< C>. Upon activating CALC/FLT, this prompt wi l l appear on
of the video display:

Bd,Bh,C,D,H,M or exit

key sequence
the top line

Now, a calculation/conversion command may be entered. The commands for CALC/FLT are :

Bdxxxxx - Convert Decimal number xxxxx to Binary .
Bhxxxx - Convert Hex number xxxx to Binary.
Cxxxxxxxx - Convert Binary number xxxxxxxx to Hex.
Dxxxx - Convert Hex number xxxx to Decimal.
Hxxxxx - Convert Decimal number xxxxx to Hex.
Mxxxx-yyyy - Subtract Hex number yyyy from Hex number xxxx.
Mxxxx+yyyy - Add Hex number yyyy to Hex number xxxx.
<CLEAR >< SHIFT >< C> - Exit CALC/FLT and return to current procedure.

The screen display will be restored.

LS-Utility Disk
Page - 3

Any command entered at the CALC/FLT prompt may be either upper or lower case. Commands
cannot contain extraneous spaces or invalid characters. If an invalid
conversion/calculation command is entered, an error message will be displayed. After a
command has been entered, the result will be displayed. Pressing <ENTER> will return
you to the CALC/FLT command prompt.

The following rules and restrictions describe the entry of numeric values and the
corresponding values returned:

Binary Data Entry - Up to 8 binary digits (0's or l's) may be entered.

Hex Data Entry - Up to 4 hex digits may be entered. When converting to Binary,
either 8 or 16 Binary digits will be displayed, depending on the magnitude of the
Hex value entered. If you are converting a Hex number to Decimal and the value
entered is greater than X'7FFF', two Decimal values will be returned. They will
represent the signed and unsigned decimal representation of the Hex value. If an
Addition calculation causes a "carry", or a Subtraction calculation causes a
"borrow", the value returned will be represented as "modulo 65536".

Decimal Data Entry - Up to 5 decimal digits may be entered. If a convert to
Binary is done, the number entered must be in the range of 0 to 65535. When
converting to Hex, the decimal value entered should be in the range of -32768 to
65535.

The following table shows example CALC/FLT commands and the returned results.

CALC/FLT command

Bd255
Bh101
C010011
DlFF
D8001
H-256
Hl024
H65535
MF000-FF
M100-101
M7FFF+7FFF
M10+FFF1

Result

11111111
00000001 00000001
0013
511
32769 -32767
FF00
0400
FFFF
EF01
FFFF
FFFE
0001

When removing CALC/FLT from high memory, the following points should be noted. The
procedure for removal must be followed in the exact sequence shown in the syntax
block. Doing a Reset of the CALC/FLT device prior to resetting *KI will cause a system
"hang up". If CALC/FLT is the last module in high memory, removing it will restore all
memory used.

If CALC/FL T is "trapped" in memory (i.e. some other high memory filter or driver was
installed after the installation of CALC/FLT), an informative message will appear
indicating that this is the case. If it is desired to re-install CALC/FLT after it had
been trapped, the normal installation procedure should be used, and CALC/FLT will
re-use its original memory assignment. Please note however, that the orginal device
name that was assigned to CALC/FLT should NOT be removed from the device table. This
is due to the fact that the re-installation procedure requires the device name (and
location of the device in the device table) to be the same as it was during initial
installation.

LS-Utility Disk
Page - 4

K S M P L U S / F L T

KSMPLUS/FLT is a keyboard filter which adds several features to the standard KSM/FLT
found in TRSDOS 6. The main enhancements are: the ability to edit the contents of a
currently active KSM key and the ability to define the function and shifted function
keys. Additional commands have also been added to display the current date and time,
repeat the last DOS command and send a top-of-form character to the printer. The
syntax for installing and removing KSMPLUS is as follows:

-==

To Install KSMPLUS/FLT:

SET *ds KSMPLUSn/FLT filespec (parm,parm)
FILTER *Kl *ds

To Remove KSMPLUS/FLT:

RESET *KI
RESET *ds
KSMPLUSn/FLT (REMOVE)

*ds is any valid TRSDOS device spec

n represents the KSMPLUS module to use (1, 2 or 3).

filespec is any KSM-type data file. If no file extension
is used with filespec, a default extension of /KSM
will be assumed.

Optional Parameters:

SPACE=ddd

ENTER=x

Amount of additional space to reserve in
the KSM data area for dynamic key
definition. It may be entered as a decimal
value or as a hexadecimal value in the
form X1 nnnn 1 • Not valid with KSMPLUS
module 1. The default is 32.

Character to use as the embedded <ENTER>
in a KSM key definition. It may be entered
as a character within quotes, as a decimal
value or as a hexadecimal value in the
form X1 nn 1 • The default is the semi-colon
character<;>.

abbr: SPACE=S, ENTER=E, REMOVE=R

-----------------==

I M P O R T A N T N O T I C E

KSMPLUS/FLT is designed as a keyboard filter only!! Use of this filter on any other
device will cause unpredictable if not disasterous results.

LS-Utility Disk
Page - 5

There are three KSMPLUS/FLT modules included with this
KSMPLUSl/FLT, KSMPLUS2/FLT and KSMPLUS3/FLT. Here are
KSMPLUS/FLT module:

package. They are
the functions of

named
each

KSMPLUSl/FLT - Includes 4 special key sequences. These will allow date or time
strings to be generated, a top of form character (X'0C') to be
sent to the printer, and a repeat of the last DOS command. Also,
the number of KSM keys has been expanded from 26 (<CLEAR><A>
through <CLEAR><Z>) to 32. The extra 6 KSM keys are accessible via
the function and "shifted" function keys (<Fl > through <F3>).

KSMPLUS2/FLT - Includes all features of KSMPLUSl/FLT, plus the ability to
re-define any KSM key.

KSMPLUS3/FLT Includes all features of KSMPLUS2/FLT, plus a "video restore" is
done after a key re-definition.

KSMPLUSl/FLT

KSMPLUSl/FLT adds the following key functions to the standard TRSDOS KSM/FLT.

<CLEAR >< SHIFT >< X> - Repeat last DOS command.
<CLEAR >< SHIFT >< T> - Send a top of form (X'0C') to the printer.
<CLEAR >< SHIFT >< Z> - Generate and pass through the keyboard driver an 8

character Date string in the form mm/dd/yy.
<CLEAR >< SHIFT >< S> - Generate and pass through the keyboard driver an 8

character Time string in the form hh:mm:ss.
<Fl > through <F3 > - Additional KSM key definitions. Up to 32 KSM keys may be

defined. If more than 26 keys are defined, the 27th through
32nd KSM key definit ions can be invoked by use of the <Fl >
through <F3 > keys (for KSM key numbers 27, 28 and 29,
respectively) and their "shifted" counter-parts (for KSM key
numbers 30-32). If no assignment is made to a KSM key, its
function will remain unchanged.

Using TRSDOS KSM, 26 KSM keys (<CLEAR >< A> through <CLEAR >< Z>) are available. With
KSMPLUS, up to 32 key definitions can be made. If used, the data definitions for the
function keys must follow the data definition for the <CLEAR >< Z> key (i.e. they must
follow the 26th carriage return in the KSM data file). Please note that if no data is
defined for a KSM key, the key depression sequence will return the standard key value.
For example, if there is no KSM data assigned to the <A > key and <CLEAR><A> is
pressed, the value X'Cl' (decimal 193) will be returned.

To create a KSM data file, it is recommended that a text editor (such as LS-LED) be
used. If it is necessary to use the TRSDOS BUILD command, the following points should
be noted. Normally, when the BUILD command determines that the f i le to be built has an
extension of ''KSM", prompts will appear for each of the KSM keys A-Z. Once the
definition for the <Z> key has been made, the BUILD operation will be terminated. When
using BUILD to create a KSMPLUS data file with key assignments for the function keys,
use BUILD in the normal manner to define the keys A-Z. Now use BUILD again with the
same filespec and the APPEND parameter. KSM key prompts will appear again, starting
with A. Entries made for the keys A-F will correspond to the function and shifted
function keys of KSMPLUS.

The KSMPLUS <CLEAR >< SHIFT >< X> command differs from the TRSDOS <CTRL >< R> command
(repeat last DOS command) in that the command will be displayed, but not automatically
executed. All characters of the last DOS command will be passed through the keyboard
driver and displayed on the video, with the cursor positioned after the last character
of the command. It is only valid as the first keyboard entry at the TRSDOS Ready
prompt.

LS-Utility Disk
Page - 6

KSMPLUS2/FLT

In addition to the features noted in KSMPLUSl/FLT, KSMPLUS2/FLT will respond to the
key sequence <CLEAR >< SHIFT >< E>. This will cause the "Edit KSM Key" mode to be invoked.
After this key sequence, the top two lines of the video will be cleared, and a plus
sign <+> will appear in the upper left corner. This indicates that the edit mode is
active .

One of two actions may be performed at this point. Depressing the key sequence
<CLEAR >< SHIFT >< E> aga i n will term i nate the edit mode, and you will be returned to the
currently active process (i . e. the currently running program or TRSDOS Ready).

Pressing any alphabet ic key (A through Z) by itself (without the <CLEAR > key), or a
numeric key 1-6, will select the key to be re-defined. The plus sign will be replaced
by the character pressed, followed by an equal sign <=>. At this stage, the given KSM
key definition may be edited. The numer i c keys 1-6 will allow ed i ting of the function
and shifted function keys, with 1 corresponding to <Fl > and 6 corresponding to
<SHIFT >< F3 >. During any part of the editing, the key sequence <CLEAR >< SHIFT><E > may be
depressed to terminate the edit and leave the KSM key definition unchanged.

While editing a KSM key, any keyboard character/sequence with the exception of
<ENTER >, <LEFT ARROW > and <CLEAR >< SHIFT >< E> may be entered, and may be assigned to the
KSM key (the <BREAK > key is a valid character in most cases). <ENTER > will terminate
the edit and assign the information after the equal sign to the KSM key. A KSM key can
be "eliminated" by entering the KSM key edit mode, pressing the desired key (A-Z,
1-6), and pressing <ENTER > (i.e. assign "No data" to the KSM key).

The <LEFf ARROW > key may be used as a backspace.

If a KSM key sequence is pressed dur i ng a key edit, the characters assigned to that
key will be entered for the key re-definition. For example, to add data to the <A> KSM
key (which already has data ass i gned to it):

1) Depress <CLEAR >< SHIFT >< E> to enter KSM edit.
2) Press ' A> to edit the <A> KSM key.
3) Press <CLEAR >< A> to as s ign the "current" data to the <A> KSM key.
4) Type in any additional information .
5) Press <ENTER > to save the new definition.

Some consideration must be made regarding the SPACE parameter (see the installation
procedure i n the syntax block) . When a KSM key is edited, all keys entered are stored
in a temporary buffer whose length i s dictated by the SPACE parameter . The size of the
SPACE buffer changes according to any ed i ts which are made.

For example, suppose the SPACE parameter was defined to be 50, and you wished to "add
on'' to a key definition whose length was 45. Although the r e are 50 characters of "free
space" , the maximum amount of characters that could be added on to the current
definition would be 5 (using the above procedure). Furthermore, if such an addition
was made, and it was desired to "add on" again to the same KSM key, only the original
45 characters of the key definition could be displayed and entered. This is because
the f i rst addition caused the "free space'' to shrink to 45 characters.

Two ways around thi s situation are: 1) The SPACE parameter can be specified to be
"large" enough to hold the longest KSM key definit ion, taking into account any edits
that might be made . In some cases this may not be practical, since the larger the
SPACE buffer , the more memory KSMPLUS will take up.

LS-Utility Disk
Page - 7

2) First assign "No data" to one (or more) KSM keys which will no longer be used. This
has the effect increasing the available SPACE buffer. Once enough space has been freed
up, the addition can be made to the KSM key in question.

As a final note concerning the use of KSMPLUS2, the maximum length of an edited KSM
key is 156 characters. There is no restriction to the length of a key definition
loaded from a disk file.

KSMPLUS3/FLT

In addition to the features noted in KSMPLUS2, KSMPLUS3/FLT will restore the top two
lines of the video upon completion of an edit, and will return the cursor to where it
was prior to the edit. With KSMPLUS2/FLT, the top two lines of the video will be lost
when a KSM key is edited.

Removal and Re-installation of All KSMPLUS modules

When removing KSMPLUS/FLT from high memory, the procedure for removal must be followed
in the exact sequence shown in the syntax block. Doing a Reset of the KSMPLUS/FLT
device prior to resetting *KI will cause a system "hang up". If KSMPLUS/FLT was the
last module placed in high memory, removing it will restore all memory used.

If KSMPLUS/FLT is "trapped" in memory (i.e. some other high memory filter or driver
was installed after the installation of KSMPLUS/FLT), an informative message will
appear indicating that this is the case. If it is desired to re-install KSMPLUS/FLT
after it had been trapped, the normal installation procedure should be followed, and
KSMPLUS/FLT will re-use its original memory assignment. Please note however, that the
orginal device name that was assigned to KSMPLUS/FLT should NOT be removed from the
device table. This is due to the fact that the re-installation procedure requires the
device name (and location of the device in the device table) to be the same as it was
during initial installation.

WhJn replacing KSMPLUSl data files (when KSMPLUSl is "trapped" in memory), the same
restrictions which apply to TRSDOS KSM should be noted
less than or equal to the originally installed data
data files for KSMPLUS modules 2 and 3, the "replaced"
or equal to the quantity - original data length
re-installation, SPACE need not be specified.

(i.e. the data length must be
length). When replacing trapped
data lenqth must be less than

+ SPACE. In the case of

Only one of the KSMPLUS modules may be resident in ~emory. If you mistakenly try to
install two KSMPLUS modules, an error message will be displayed.

In terms of the memory consumed by the KSMPLUS modules, the following list gives a
rough approximation for each module.

Example

KSMPLUSl
KSMPLUS2
KSMPLUS3

- 250 bytes+ data length.
- 500 bytes+ data length+ SPACE.
- 750 bytes+ data length+ SPACE.

To install a KSM data file named MYKEYS/KSM with KSMPLUS module 2:

SET *ds KSMPLUS2 MYKEYS
FILTER *KI *ds

LS-Utility Disk
Page - 8

M A X L A T E / F L T

MAXLATE/FLT is an input/output filter which performs a
characters to character streams. Individual characters
multi-character sequences. The syntax is:

translation of specified
may be translated into

==-==--

SET *ds MAXLATE/FLT filespec (parm)
FILTER *fd *ds

*ds is any valid TRSDOS device spec.

*fd is the device to be filtered.

filespec is the file containing the translation table.
If filespec contains no extension, /MLT will be the
default.

Parameters: INPUT or OUTPUT

Used to specify the direction of the translation.
Exactly one ,must be specified. The direction must
correspond to that of the filtered device (if one
directional) or to the direction of the translation
(if the filtered device is bi-directional).

abbr: INPUT=I, OUTPUT=O

-==
MAXLATE/FLT is a translation
Individual characters may be
length for each translation
are defined in a translation

filter which may be applied to any type of device.
translated into multiple character sequences. The maximum

stream is 254 characters. The translations to be performed
table.

Setting Up a Translation Table

To facilitate the creation of translation tables, it is recommended that a text editor
(such as LS-LED) be used. If a text editor is not available, the TRSDOS BUILD Library
command may be used.

Any translation defined in the table must follow the format K=T, where K is the key to
be translated and T is the resultant translation stream. For the most part, the
translation table can be built in a free format, where the characters may be specified
as either hexadecimal values or the actual character contained within quote marks. One
important restriction is that every defined translation must be terminated by a
carriage return. The best way to illustrate the format of a translation table is
through the use of examples.

Suppose that it was desired to set up a translation table for the Printer Device
(*PR). The purpose of the translation is to send to the printer the character stream
"0 (zero)" each time the character <0> was encountered, and the character stream -
"0 (oh)" for all occurrences of the capital letter <O> (oh). The following is a sample
translation table that would accomplish this.

3(/J = "0 (zero)"
4F = "0 (oh)"

LS-Utility Disk
Page - 9

The above translation table illustrates the format to be used in building a
translation table (K=T). In the first line, the <30> is the hexadecimal value
associated with the character <0>. The translation stream appears to the right of the
equal sign, and is contained within quote marks. Notice that there are spaces
separating the various elements of each translation line (i.e there is a space between
the equal sign and the first quote mark). Although not required, the translation table
may be constructed in this manner to allow easier reading. However, the space
appearing between the <0> and the open parenthesis <(> will become part of the
translation, since it is within the quotes.

The first line of the above translation table could also have been represented as:

"0" = 30,20,28,7a,65,72,6f,29

In this example, the translated character is contained within quotes, while each
character in the translation stream is represented in hexadecimal format. Notice that
commas are used as separators in the translation stream. Any character may be used as
a separator, with the exception of a quote mark or a digit (0-9).

Let us consider one more example of establishing a translation table. Suppose once
again that we wish to set up a translation table for the printer. This time we are
blessed with the luxury of having a printer that will backspace (when the character
X'08' is sent to the printer). One of our objectives is to print a slash </ > through
each zero <0> encountered. Furthermore, we know that the character X'0F' will cause
our printer to do strange and mysterious things, and so we do not wish to send that
character to the printer. The following table could be set up to accomplish this.

"0" = "0" 08 "/"
0F =

In the f i rst line of the translation table, notice the intermixing of character
strings in quotes and hexadecimal values. The free format of MAXLATE translation
tables will accomodate this type of setup. Also notice that the backspace character
(X'08') is specified as two hexadecimal digits. In this case, the leading <0> is
required, as all hexadecimal specifications must have two digits .

The second line of the translation table demonstrates the method of "filtering out"
unwanted characters. Any time a X'0F' is encountered, "no character" will be sent to
the printer. Please note the distinction between "no characater" and a "null"
character. If it was desired to send the character X'00' to the printer in place of
X'0F', the following translation line should be used.

0F = 00

Installation of MAXLATE

Once a translation table has been established, follow the command sequence shown in
the syntax block. Let us assume that we have a translation table stored on disk in a
file named PRT/MLT. To set up a MAXLATE translation, the following command sequence
could be used .

SET *PM MAXLATE/FLT PRT (OUTPUT)
FILTER *PR *PM

From the above commands, *PM is the filter device which we are creating . Since MAXLATE
uses as a default extension "MLT", we do not need to specify the extension for the
translation file . The OUTPUT parameter is required, since the printer is an output
device and we wi sh to filter characters going "from" the computer "out" to the
printer. The FILTER command applies the MAXLATE filter to the printer device.

LS-Utility Disk
Page - 10

NOTE: If you are not sure whether a device is OUTPUT, INPUT or
bi-directional, use the following TRSDOS Library command.

DEVICE (B=Y)

Along with
listing all
appear after
the device.

other information, a device table will be displayed,
currently active devices. The following symbols will
each device name, and will show the capabilities of

=> Device is capable of Output only
<= Device is capable of Input only
<=> Device is bi-directional

If at any time you wish to temporarily suppress the translation process, perform a
RESET of the device being filtered (in the above example, RESET *PR). Please note that
the translation filter will be resident in memory, but inactive. To re-establish the
translation process, simply re-use the FILTER command (the SET command is not
required).

Practical Use of MAXLATE

The implementations of and uses for MAXLATE are wide and varied.
to cover all possible instances where MAXLATE could be a viable
Let's look at one possible use of the MAXLATE filter with the
(*CL).

It would be difficult
answer to a problem.
communications line

Let us suppose that is it desired to send and receive files through the communications
line (*CL). We will be dealing with ASCII document files. Our main concern is centered
on the "termination" of a physical line. On our end, each physical line is terminated
by a carriage return (X'0D'). On the other end, each line is terminated by a carriage
return and a line feed (X'0D' and X'0A', respectively). When we send a document, we
wish to have all carriage returns changed to a carriage return and a line feed. When
we receive a document, we wish to have two carriage returns at the end of each
physical line (for double spacing purposes).

This problem suggests the use of two MAXLATE translations; one of which installed on
the comm line as an input device, the other handling output. We need to create two
translation table files. The first one (named COMIN/MLT) will handle the translations
as files are received. The second (named COMOUT/MLT) will perform translations on
files which are sent. The listings below depict the two translation files.

COM IN/ML T

0D = 0D 0D
0A =

COMOUT/MLT

0D = 0D 0A

Once the translation files have been created, it is but a matter of establishing our
filter devices and filtering the comm line. If we pick the device names *CI (input
filter) and *CO (output filter), the following commands may be used to achieve our
final goal.

SET *CI MAXLATE COMIN (I)
SET *CO MAXLATE COMOUT (0)
FILTER *CL *CI
FILTER *CL *CO

LS-Utility Disk
Page - 11

P R C O D E S / F L T

PRCODES/FLT is a printer filter which will allow several printer control functions to
be performed. These functions include sending a zero, a "backspace character" sequence
and a slash</> every time a <0> (zero) is encountered, and allowing a toggle for bold
faced and underlined printing. This filter will function only on printers capable of
true backspacing. The syntax is:

===-

SET *ds PRCODES/FLT (parm,parm)
FILTER *PR *ds

*ds is any valid TRSDOS device spec.

Parameters:

BACK="xxxx" Specifies the character sequence to use
for a backspace character. Must be
specified as an ASCII string enclosed in
quotes, and will represent the Hex
value(s) used to generate a backspace.
The default is "08".

BOLD=n Character used to toggle bolded print on
and off. It may be entered as a decimal
number, as the character enclosed in quotes
or as a hexadecimal value in the form X'nn'.
The default is X'7F' (decimal 127).

STRIKE=n Decimal value which determines the number
of times to strike a character for bold
printing. The default is 3.

UNDER=n Character used to toggle underlined print
on and off. It may be entered as a decimal
number, as the character enclosed in quotes
or as a hexadecimal value in the form X'nn'.
The default is X'5F' (decimal 95).

abbr: BOLD=B, STRIKE=S, UNDER=U.
BACK cannot be abbreviated.

-==

PRCODES/FLT is a printer filter designed to produce BOLDED and UNDERLINED print
effects. Additionally, every time a <0> (zero) is encountered, PRCODES will backspace
and print a </> (slash) through the zero. Due to the manner in which PRCODES
functions, your printer MUST have backspace capabilities. PRCODES should NOT be used
with printers that are incapable of backspacing or use backspace merely to delete the
last character in the print buffer.

The BACK Parameter

Due to
PRCODES
printed
the BACK

differences in printer specifications, the BACK parameter is included in
to allow the specification of a character sequence which will produce a
''backspace". If your printer recognizes the character X'08' as a backspace,
parameter need not be specified.

LS-Utility Disk
Page - 12

On some printers, a multi-character sequence is required to generate a backspace. The
following example will illustrate the proper use of the BACK parameter for such
printers. Please refer to your printer manual for exact specifications.

Let us assume that in order to pr i nt a backspace, your printer needs to receive the 2
character sequence of Escape and Backspace (X'lB' and X'~8, respectively). The
following command must be used to establish the PRCOOES filter device.

SET *ds PRCOOES (BACK="1B08")

The character sequence used to produce a backspace must be enclosed within quote
marks. For each "printed'' character in the sequence, a two-character hexadecimal value
must be specified (in the case of the "08", the leading <0> is required). Extraneous
characters (e.g. spaces used as separators) CANNOT appear in the backspace "string".

Use of Bold and Underlined print

As the default, PRCOOES uses the characters X'7F' and X'5F' as "toggles" to turn
on/off Bold and Underlined printing. The first occurrence of either of these
characters wi 11 "turn on" the desired function. The function will remain "on" until
the "toggle" character is encountered again, at which time the function will be
"turned off". Both Bold and Underl i ne may be active at the same time. The toggle
characters can be generated through the keyboard using the following key sequences.

X'7F'
X' 5F'

- Bold ON/OFF
- Underline ON/OFF

- <CLEAR >< SHIFT>< ENTER >
- <CLEAR >< ENTER >

If toggle characters
(i.e. either BOLD= or
established.

other than the defaults are desired, the appropriate parameter
UNDER=) must be specified when the PRCODES filter device is

As an example, suppose that you wish to use PRCODES to print text containing
underscore characters (X'5F'). It is desired to have these characters printed "as is"
(normally an underscore would toggle underlining on and off). In this case, a
different character must be used as a toggle for underlining. If the "vertical bar"
character (X'7C') was chosen as the toggle character to replace the underscore, the
following command could be used to establish the PRCODES filter device.

SET *ds PRCODES (U=X'7C')

The STRIKE Parameter

The STRIKE parameter is used to tell PRCODES the number of times to
character for bold printing. If not specified, the default will be 3
strike value used to print this document). Theoretically, a value up
used. In practice however, the strike value should not exceed 10,
overstriking can literally "punch" a hole in the paper.

Use of PRCODES with TRSDOS Printer Options

"overstrike" a
(which is the
to 255 could be
since repeated

If it is desired to use PRCODES with the TRSDOS printer filter (FORMS/FLT), the
printer device should be filtered with PRCODES first, followed by FORMS. The following
commands will illustrate the proper sequence of installation.

SET *ds PRCOOES/FLT
SET *PF FORMS/FLT
FILTER *PR *ds
FILTER *PR *PF

LS-Utility Disk
Page - 13

If PRCODES is to be used with the TRSDOS print Spooler, the Spooler should be
installed first.

If all three are to be present at the same time, they should be installed in the order
of the Spooler, followed by PRCODES, followed by FORMS.

When using PRCODES and FORMS, the best results will be obtained when the "Maximum
Characters per Line" parameter of the FORMS filter is OFF (i.e. in its default state).
If a value is specified for this parameter, the actual number of characters printed
will be less than the maximum when Bold and Underline 11 toggles 11 are encountered.

Miscellaneous

Use of PRCODES with printers that accept control sequences to enable/disable Bold and
Underline should present no problem. If you are using such a printer, you may wish to
examine the possibility of using the internal printer capabilities to produce the
desired result. This type of application may be approached by using the MAXLATE
filter. For more information, refer to the MAXLATE/FLT section of this document.

If you wish to temporarily suppress PRCODES (i . e. you do not wish to pr i nt bold,
underline or slashed zeroes) simply perform a RESET of the printer (*PR). To re-enable
PRCODES, use the FILTER command as shown in the syntax block (the SET command need not
be done).

NOTE

Performing a RESET of the PRCODES filter device will cause the filter to be
permanently resident in high memory. Futhermore, it will not be usable, and you will
not be allowed to re-establish the filter. For these reasons, it is recommended that
the PRCOOES filter device NEVER be RESET.

LS-Utility Disk
Page - 14

R D T E S T / C M D

RDTEST/CMD is a utility program which will perform a read test on a formatted
diskette. Since the read test is non-destructive, the diskette may contain data. The
entire diskette will be read, and any read errors that are found will be reported. The
syntax is:

=======================-=================================----
RDTEST :d {parm)

:dis the drive containing the diskette to be tested.
If not specified, it will be prompted for.

Parameters:

P Send any informative messages to the printer as well
as to the video. If not specified, any message will
be sent to the video only.

T Specify number of consecutive times to perform a
read test on a diskette. The default is 1.

abbr: None

-==
RDTEST will read all sectors on a diskette, starting at cylinder 0,
the highest numbered cylinder. As the read test is being done, the
number which is currently being tested will be displayed on the video.

and proceding to
cylinder/sector

Any read error encountered will be reported, and the display will consist of the
cylinder number and sector number of the "bad read". Please note that ROTEST will read
the entire diskette, including any "locked out" cylinders. If the T parameter is used,
the diskette will have that many entire read tests performed on it. If at any time it
is desired to terminate the read test, press the <BREAK> key.

LS-Utility Disk
Page - 15

R E A D 4 0 / C M D

READ40/CMD is a utility/driver program designed to allow 5 1/4 inch diskettes which
have been formatted in a 35/40 track drive to be read by an 80 track disk drive. When
used, a high memory disk driver will be installed to perform the operations. The
syntax is:

===
READ40 :d (parm)

:dis the 80 track drive to use for the read. It MUST be
a 5 1/4 inch - 96 Track/Inch (96 TPI) drive. It can
be any enabled drive, with the exception of :0.
If not specified, it will be prompted for.

Parameters:

TABLE

REMOVE

Display a table of all drives and associated
driver information. If specified, READ40 will
NOT be installed in high memory.

Remove the READ40 driver from high memory.
:d cannot be specified when removing READ40.

abbr: TABLE=T, REMOVE=R

-==
I M P O R T A N T N O T I C E

READ40/CMD will install a special disk driver into high memory to
allow reading 35/40 track diskettes in an 80 track drive. Only one
drive may have a READ40 driver attached to it. Once installed, the
drive in question will be software Write Protected, to assure that
no "writes" are performed during the duration of the REA040
operation. Under NO circumstances should any write be performed to
a 40 track diskette in an 80 track drive using READ40. Attempting
to do so WILL cause the diskette in question to be unusable.
Furthermore, the 40 track diskette to be read should be of
compatible format with TRSDOS 6 (such as an LOOS 5.1 diskette).
REA040 will allow you to read a MODEL III TRSDOS 1.2/1.3 diskette,
using the TRSDOS CONV utility. Any diskette that needs to be
REPAIRed cannot be used with READ40 (unless it is REPAIRed on a 40
track drive prior to being used with READ40).

Under normal operating conditions, 40 track diskettes (i.e. diskettes that were
formatted on either 35 or 40 track drives) cannot be read on an 80 track drive, and
vice versa. READ40 will allow reading a 40 track diskette in an 80 track drive (but
NOT vice versa).

It is a simple matter
to the one shown in
correspond to an 80
installing REA040.

to use READ40. All that is needed is to enter a command similar
the syntax block. Please note that the drivespec entered should
track drive. The drive in question must be enabled prior to

Once REA040 has been installed, you may place a 40 track diskette in the 80 track
(READ40) drive, and perform any read operation (such as DIR, BACKUP , COPY or CONV if
the diskette is of MODEL III TRSDOS 1.2/1.3 format).

LS-Utility Disk
Page - 16

READ40 has a built in 1/0 error monitor. If a read error is detected on the READ40
drive, an informative message will appear, and you will be prompted for the desired
action to be taken. At this point you may:

<A> - Abort the operation, and return to TRSDOS Ready.

<C> - Continue the operation. The error will be returned to the currently active
process, and will be handled accordingly.

<I> - Ignore the error. A return will be made to the currently active process
without an error indication. If an Ignore is done during a file move
operation, the integrity of the data in the destination file may be
suspect.

<R> - Retry the operation. The disk operation causing the error will be retried.
If the retry is successful, a return will be made to the currently active
process. If it is not successful, you will be returned to this prompt.

NOTE

While READ40 is active, if an 80 track diskette is placed in a READ40 drive, the drive
may be seen as containing "No Disk". This is normal. If such a situation occurs and a
40 track diskette is then placed in the drive, it may not initially be readable by
READ40, and the first access of it may invoke the 1/0 monitor noted above. At this
point, the prompt should be answered with <C> (continue), and the 40 track diskette
will then be "logged" in for proper operation.

Use of READ40 Parameters

If READ40 was the last module placed in high memory, the space consumed by it may be
reclaimed using the REMOVE parameter. As an example, if drive 5 was established as a
READ40 drive, and it was desired to remove READ40, the following command could be
entered.

READ40 (R)

After execution of this command, drive
operation. Note that no drivespec was
established. Entering a drivespec with
error.

5 would be restored to normal 80 track
used, since only one READ40 drive may be

the REMOVE parameter will cause a Parameter

If READ40 is "trapped" in high memory, an attempt to remove it will cause an
informative message to be displayed, indicating that it could not be removed from high
memory. At this point, READ40 will be inactive, and the 80 track drive involved will
function as normal. READ40 may be re-installed and will utilize the same high memory
allocation.

If READ40 is entered with the TABLE (T) parameter, an informative drive table will be
displayed, showing all drives and associated drivers. If the T parameter is specified,
READ40 will NOT be installed. Any drivespec supplied on the command line will be
ignored.

LS-Utility Disk
Page - 17

T R A P / F L T

TRAP/FLT is an input/output filter which will "trap" for a specified character. The
trapped character will be discarded. The syntax is:

-===z=====

SET *ds TRAP/FLT (parm,parm)
FILTER *fd *ds

*ds is any valid TRSDOS device spec.

*fd is the device to be filtered.

Parameters:

INPUT/OUTPUT Used to specify the direction of the
trapping. At least one must be used. The
direction must correspond to that of the
filtered device (if uni-directional) or
to the direction of the trapping (if the
filtered device is bi-directional). Both
INPUT and OUTPUT may be used to trap for
the same character in both directions if
the device is bi-directional.

CHAR=nn Specifies the character to "trapped".
nn may be entered as a decimal number, as
the character enclosed in quotes, or as a
hexadecimal value in the form X'nn'.

abbr: CHAR=C, INPUT=!, OUTPUT=O

===
TRAP/FLT may be used with any device to trap
to be trapped, TRAP/FLT must be installed as
be trapped. Each installation of TRAP will
made. If you need to trap several characters,

Using TRAP/FLT on an Output Device

a character. If multiple characters need
many times as the number of characters to
cause a new high memory allocation to be
you may wish to use MAXLATE/FLT.

One use for the TRAP/FLT would be when listing a file to the screen. If the "control"
character X'l7' (decimal 23) is passed to the video device (*DO), the "expanded"
character mode (40 characters per line) will be enabled. To prevent this from
happening, use following command sequence:

SET *ds TRAP (C=X'17' ,OUTPUT)
FILTER *DO *ds

Using TRAP/FLT on an INPUT Device

As another example, let us use TRAP/FLT to filter the Keyboard device (*KI), so that
the percent key<%> will be ignored when pressed. These commands may be entered to do
this (note that in this example, the character to trap is enclosed in quotes).

SET *kd TRAP (C="%",I)
FILTER *KI *kd

LS-Utility Disk
Page - 18

T Y P E I N / C M D

TYPEIN/CMD is a utility program designed to aid in performing "automated" procedures.
Unlike TRSDOS Job Control Language (JCL), TYPEIN will allow single key entries to be
passed to an application program, and be acted upon. With JCL, commands are acted upon
only through the keyboard "lineinput" routine, and must be terminated with a carriage
return (the BASIC statement INPUT is an example of such a command). TYPEIN allows
single key requests and certain keyboard "scanning" situations to be satisfied (the
BASIC function INKEY$ is an example of a keyboard "scan" request, and can be satisfied
through TYPEIN). The syntax is:

TYPEIN filespec,filespec, •.• (parm,parm)

filespec is a file containing characters which will be
acted upon by TYPEIN. Use of filespec is optional.
If not specified, all characters entered will be
stored in a "TYPEIN buffer" until <BREAK> is
pressed, at which time they will be processed.
More than one filespec may be used. If this is the
case, the filespecs will be acted upon in the order
of entry on the TYPEIN command line.

Parameters:

Xn=X'fftt' - Optional character translation to be
performed by TYPEIN. n may be a value
from 1 to 4 (i.e. up to 4 translations
may be done). ff is the hex character to
be translated. tt is the hex character to
translate ff to.

LINES=n - Optional parameter used to specify the

abbr: LINES=L

number of "lines" to be processed from
the TYPEIN file. Each occurrence of a
carriage return (X'0D') signifies the end
of a line. n lines will be processed by
TYPEIN from the filespec, starting with
the first line in the file. n must be a
decimal number.

-------------=--===

N O T I C E

Although a total understanding of JCL proces s ing is not required to use
TYPEIN, the basic function of JCL (that being to perform automated tasks)
needs to be understood prior to using TYPEIN. Any questions regarding JCL
process ing and the limitations therein can be answered by consulting your
TRSDOS User s manual. TYPE IN is NOT designed to replace JCL; rather, its
function i s to perform automated tasks which cannot be done with JCL. Al so
note that TYPEIN will NOT function with any program which scans the keyboard
for certain "Abort" keys (in essence throwing away any non-abort entry),
since thi s type of situation will "drain" the TYPEIN buffer/filespec.

LS-Utility Disk
Page - 19

The main advantage of using TYPEIN over JCL is that it can deal with keyboard "scans"
and single key requests (for technical information, refer to the TRSDOS Technical
Reference Manual - SVC's @KBD and @KEY). JCL will function only with programs
containing "prompts" which require depression of the <ENTER> key to perform the
action. Prompts which act "immediately" after the input of a key (i.e. without the
<ENTER> key) cannot be controlled through JCL. These "immediate" prompts may be
handled with TYPEIN (in many situations) to allow the procedure to be automated.

There are two methods in which TYPEIN may be used. The first method requires no TYPEIN
filespec (i.e. just enter the command TYPEIN). Using this method, TYPEIN will "save"
all ensuing keyboard entries without acting upon them. This will continue until the
<BREAK> key is pressed, at which time all keystrokes will be processed.

The second method utilizes one or more filespecs containing the keystrokes to be
processed. It is similar to JCL, except that keyboard scan requests may be satisfied.

NOTE

TYPEIN will only "process" keystrokes, and no JCL "macros" or enhanced
features (such as //IF conditionals) are allowed. TYPEIN operates by
installing itself into a temporary "high memory" allocation. For this
reason, it should NOT be used to install high memory "drivers" or "filters".
Using TYPEIN to perform such operations will cause TYPEIN to become
"trapped" in high memory, with the result being wasted memory.

Using TYPEIN in the Direct Mode

Essentially all that is required to use TYPEIN in the direct mode is to enter the
command TYPEIN at TRSDOS Ready. Once this is done, all keystrokes entered will be
"saved" until break is pressed, at which time they will be acted upon.

As an example, let us use TYPEIN to perform a RDTEST (see RDTEST/CMD for more
information). RDTEST is a program which can be controlled through a JCL, provided that
the drivespec is included on the command line. However, if the drivespec is not
supplied on the command line, RDTEST will prompt for it. The type of prompt that
RDTEST uses cannot be handled with JCL (since it is an "immediate" prompt and <ENTER>
is not required). However, TYPEIN may be used to supply this prompted information.

Suppose the following keystrokes were entered after TYPEIN was activated (note that
each line, with the exception of the last, is terminated with a carriage return, and
that the last line represents the depression of the <BREAK > key).

RDTESf (P)
1
<BREAK >

These commands will appear on the screen as they are entered. They will not be
executed until the <BREAK> key is pressed, at which time they will be processed in the
order entered. If the carriage return after the <1> was not entered (i.e. if <1> was
pressed followed by <BREAK>), only the first line would have been processed. If
<BREAK > is pressed before "Entering" a line, no characters on that line will be
processed.

NOTE: RDTEST is a program which performs a "scan" of the keyboard for <BREAK>, and
discards any non <BREAK > character. If additional commands would have been entered in
the above example, they would not have been executed, since the TYPEIN buffer would be
"drained" by RDTEST.

LS-Utility Disk
Page - 20

Use of TYPEIN with a Filespec

The basic concept of using TYPEIN in the direct mode also applies to using it with a
filespec. Rather than entering the keystrokes from the keyboard, they are contained in
a file.

A typical example might be to run a program which "prints" information (such as
Mailing Labels). If the program cannot be automated through JCL, TYPEIN may provide
the solution.

Assume that the program in question is a machine language program, named MAILPRT/CMO.
In order to print labels, input needs to be taken for the print file to use and the
number of times to repeat each label. Each of these prompts is "immediate", and must
be answered by entering a digit (l-9). To exit the program, the letter <X> must be
input and <ENTER> pressed.

To use the filespec method of TYPEIN, we need to have a disk file containing the
program name (so that it will be executed) and the keystrokes needed by the program to
perform the printing and return to OOS when complete. Below is a sample of the
information contained in the file.

MAILPRT
52X

If these characters are contained in a file named MAILPRT/TYP, the following TYPEIN
command will allow the MAILPRT program to print labels, using print fi'le number 5,
repeating each label twice. After printing is completed, the program will return to
DOS.

TYPEIN MAILPRT/TYP

Use of the LINES= parameter

TYPEIN may be instructed to use only a specified number of lines from a file. This is
accomplished through the LINES= parameter. The value entered will be the number of
lines that TYPEIN will process. All TYPEIN processing will begin with the first line
in the file, and continue from there in sequential line order. A "line" is denoted as
ending with a carriage return (X'0D').

Use of Multiple TYPEIN Filespecs

More than one filespec may be used with the TYPEIN command. If this is the case, each
file used will be processed sequentially as appearing on the TYPEIN command line. If
the LINES= parameter is specified with multiple filespecs, it will signify the total
number of lines to be processed. For example, if Filel contains 10 lines, File2
contains 15 lines and File3 contains 20 lines, the following TYPEIN command will
process Filel entirely and the first 5 lines of File2 (no lines will be processed from
File3).

TYPEIN Filel,File2,File3 (LINES=l5)

LS-Utility Disk
Page - 21

Using TYPEIN within a JCL

Since TYPEIN is an executable utility program, use of it may be incorporated within a
JCL. Assuming that the MAILPRT/TYP file is as defined previously, the following JCL
file could be written to incorporate the use of TYPEIN .

. Example of using TYPEIN in a JCL

.
TYPEIN MAILPRT/TYP
RESET *PR
//EXIT

The results of using this JCL file (with the TRSDOS Library
of the previously mentioned TYPEIN processing to take
completed, the JCL processing will continue, and a Reset of
done.

command DO) wi l l cause all
place. After TYPEIN is

the printer device will be

Use of TYPEIN with Translations

TYPEIN may be used to perform translations on characters that are passed to it. Up to
4 different translations may be done.

As a sample use, let us consider a situation where we have an ASCII text file (named
TEXTA/TXT) which was created on a different machine and downloaded for use on a Model
4. We wish to list the document to the printer, but it contains a carriage return and
a line feed (X'0D' and X'0A', respectively) as line termination characters. This will
cause problems when printing the file, as we only require a carriage return to
terminate the line.

One method of dealing with this situation is to use TYPEIN to ''re-type" the
into a text editor, translating all line feeds to null characters. Assuming
are using LS-LED as the text editor, we need to build a TYPEIN file which will
and type in the document, translating the line feeds along the way. We wish
our TYPEIN file RMVLF/TYP. It will look something like this.

LED TXTNOLF/TXT

document
that we
run LED
to name

The file TXTNOLF/TXT will be the resulting file (created by LED) which will have all
line feeds removed.

At present, our TYPEIN file
re-type the file into LED,
orginal text file (TEXTA/TXT)
command can be used.

will allow us to enter LED. What is needed now is to
using TYPEIN. This can be accomplished by APPENDing the
to the end of our TYPEIN file. To do this, the following

APPEND TEXTA/TXT RMVLF/TYP

The TYPEIN file now contains a command to run LED and the entire document to be typed.
It is merely a matter of using TYPEIN to remove the line feeds. The command shown
below will perform the desired function.

TYPEIN RMVLF/TYP (Xl=X'0A00')

As the process is being performed, the entire text file will be typed into LED. All
line feeds will be changed to nulls (which will be "ignored" by LEO).

LS-Utility Disk
Page - 22

WARRANTY

This software program(s) is warranted to
perfonn as documented when used on the speci
fied hardware operating under the specified
disk operating system as shown on the accom
panying documentation. If within 90 days of the
date of purchase the program is found to be
defective due to a bug in the code, the pub
lisher will, upon request, provide a patch to
correct the bug or will update the program
diskette with a corrected copy within a rea
sonable time period after return of the program
diskette to the publisher. If within 90 days of
the date of purchase the documentation proves
defective due to missing pages, the publisher
will provide substitutes for the missing pages
upon request.

The publisher shall have no liability or
responsibility to the purchaser or any other
person, company, or entity with respect to any
liability, loss, or damage caused or alleged to
have been caused by this product, including but
not limited to any interruption of service,
loss of business and anticipatory profits, or
consequential damages resulting from the oper
ation or use of this program.

ATTENTION

This program package is copyrighted with
all rights reserved. The distribution and sale
of this program is intended for the personal
use of the original purchaser only and for use
only on the computer system noted herein. Fur
thennore, copying, duplicating, selling, or
otherwise distributing this product is ex
pressly forbidden. In accepting this product,
the purchaser recognizes and accepts this
agreement. The purchaser is entitled to make as
many working copies of this disk as is needed
for his or her personal use.

MISOSYS,Inc.
P.O. Box 239

Sterling, Virginia 22170-0239
703-450-4181

